Membrane (M-theory)
   HOME

TheInfoList



OR:

In
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
and related theories such as supergravity theories, a brane is a physical object that generalizes the notion of a point particle to higher dimensions. Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics. They have mass and can have other attributes such as charge. Mathematically, branes can be represented within categories, and are studied in
pure mathematics Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, ...
for insight into homological mirror symmetry and noncommutative geometry.


''p''-branes

A point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one. In addition to point particles and strings, it is possible to consider higher-dimensional branes. A ''p''-dimensional brane is generally called "''p''-brane". The term "''p''-brane" was coined by M. J. Duff ''et al.'' in 1988; "brane" comes from the word "membrane" which refers to a two-dimensional brane. A ''p''-brane sweeps out a (''p''+1)-dimensional volume in spacetime called its worldvolume. Physicists often study fields analogous to the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
, which live on the worldvolume of a brane.


D-branes

In
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
, a
string String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
may be open (forming a segment with two endpoints) or closed (forming a closed loop). D-branes are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a D-brane. The letter "D" in D-brane refers to the Dirichlet boundary condition, which the D-brane satisfies. One crucial point about D-branes is that the dynamics on the D-brane worldvolume is described by a
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups) ...
, a kind of highly symmetric physical theory which is also used to describe the behavior of elementary particles in the
standard model of particle physics The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It wa ...
. This connection has led to important insights into
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups) ...
and
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
. For example, it led to the discovery of the AdS/CFT correspondence, a theoretical tool that physicists use to translate difficult problems in gauge theory into more mathematically tractable problems in string theory.


Categorical description

Mathematically, branes can be described using the notion of a category. This is a mathematical structure consisting of ''objects'', and for any pair of objects, a set of '' morphisms'' between them. In most examples, the objects are mathematical structures (such as sets, vector spaces, or topological spaces) and the morphisms are functions between these structures. One can likewise consider categories where the objects are D-branes and the morphisms between two branes \alpha and \beta are states of open strings stretched between \alpha and \beta. In one version of string theory known as the topological B-model, the D-branes are
complex submanifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ...
s of certain six-dimensional shapes called Calabi–Yau manifolds, together with additional data that arise physically from having
charges Charge or charged may refer to: Arts, entertainment, and media Films * '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqu ...
at the endpoints of strings. Intuitively, one can think of a submanifold as a surface embedded inside of a Calabi–Yau manifold, although submanifolds can also exist in dimensions different from two. In mathematical language, the category having these branes as its objects is known as the derived category of coherent sheaves on the Calabi–Yau. In another version of string theory called the topological A-model, the D-branes can again be viewed as submanifolds of a Calabi–Yau manifold. Roughly speaking, they are what mathematicians call
special Lagrangian submanifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sympl ...
s. This means among other things that they have half the dimension of the space in which they sit, and they are length-, area-, or volume-minimizing. The category having these branes as its objects is called the
Fukaya category In symplectic topology, a Fukaya category of a symplectic manifold (M, \omega) is a category \mathcal F (M) whose objects are Lagrangian submanifolds of M, and morphisms are Floer chain groups: \mathrm (L_0, L_1) = FC (L_0,L_1). Its finer structur ...
. The derived category of coherent sheaves is constructed using tools from complex geometry, a branch of mathematics that describes geometric curves in algebraic terms and solves geometric problems using algebraic equations. On the other hand, the Fukaya category is constructed using
symplectic geometry Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed differential form, closed, nondegenerate form, nondegenerate different ...
, a branch of mathematics that arose from studies of
classical physics Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the ...
. Symplectic geometry studies spaces equipped with a symplectic form, a mathematical tool that can be used to compute area in two-dimensional examples. The homological mirror symmetry conjecture of Maxim Kontsevich states that the derived category of coherent sheaves on one Calabi–Yau manifold is equivalent in a certain sense to the Fukaya category of a completely different Calabi–Yau manifold. This equivalence provides an unexpected bridge between two branches of geometry, namely complex and symplectic geometry.Yau and Nadis 2010, p. 181


See also

* Black brane *
Brane cosmology Brane cosmology refers to several theories in particle physics and cosmology related to string theory, superstring theory and M-theory. Brane and bulk The central idea is that the visible, three-dimensional universe is restricted to a brane in ...
* Dirac membrane *
Lagrangian submanifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sympl ...
* M2-brane * M5-brane *
NS5-brane In theoretical physics, the NS5-brane is a five-dimensional p-brane that carries a magnetic charge under the B-field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and ...


Citations


General references

* * * * * {{Cite book, last1=Zaslow , first1=Eric , contribution=Mirror Symmetry , year=2008 , title= The Princeton Companion to Mathematics , editor-last=Gowers , editor-first=Timothy , isbn=978-0-691-11880-2 String theory